Question		Answer	Marks	Guidance
1	(i)		B2 [2]	Subtract one mark for each error, omission or addition down to a minimum of zero. Each force must have a label and an arrow. Accept T for 50 N . Units not required. If a candidate gives the tension in components: Accept if the components are a replacement for the tension Treat as an error if the components duplicate the tension However, accept dotted lines for the components as not being duplication
	(ii)	Horizontal equilibrium : $R=50 \sin 30^{\circ}=25$	M1 A1 [2]	May be implied. Allow sin-cos interchange for this mark only Award both marks for a correct answer after a mistake in part (i) (eg omission of R)
	(iii)	Vertical equilibrium $\begin{aligned} & N+50 \cos 30^{\circ}=10 \mathrm{~g} \\ & N=54.7 \text { to } 3 \text { s.f. } \end{aligned}$	M1 A1 [2]	Relationship must be seen and involve all 3 elements. No credit given in the case of sin-cos interchange Cao
	(iv)	$\begin{aligned} & \text { Resultant }=\sqrt{25^{2}+54.7^{2}} \\ & \text { Resultant is } 60.1 \mathrm{~N} \end{aligned}$	M1 A1 [2]	Use of Pythagoras. Components must be correct but allow ft from both (ii) and (iii) for mark only Cao

2		mark	notes
(i)	25 N	B1	Condone no units. Do not accept -25 N.
(ii)	$\begin{aligned} & 50 \cos 25 \\ & =45.31538 \ldots \text { so } 45.3 \mathrm{~N}(3 \mathrm{s.f.}) \end{aligned}$	M1 A1 2	Attempt to resolve 50 N . Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. No extra forces. cao but accept - 45.3.
(iii)	Resolving vertically $\begin{aligned} & R+50 \sin 25-8 \times 9.8=0 \\ & R=57.26908 \ldots \text { so } 57.3 \mathrm{~N}(3 \mathrm{s.} \mathrm{f.}) \end{aligned}$	M1 A1 A1 3	All relevant forces with resolution of 50 N . No extras. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. All correct.
(iv)	Newton's $2^{\text {nd }}$ Law in direction DC $\begin{aligned} & 50 \cos 25-20=18 a \\ & a=1.4064105 \ldots \text { so } 1.41 \mathrm{~m} \mathrm{~s}^{-2}(3 \text { s. f. }) \end{aligned}$	M1 A1 A1 3	Newton's 2nd Law with $m=18$. Accept $F=m g a$. Attempt at resolving 50 N . Allow 20 N omitted and $\mathrm{s} \leftrightarrow \mathrm{c}$. No extra forces. Allow only sign error and $s \leftrightarrow c$. cao
2 (v)	continued Resolution of weight down the slope	B1	$m g s i n 5{ }^{\circ}$ where $m=8$ or 10 or 18 , wherever first seen
	either Newton's $2^{\text {nd }}$ Law down slope overall $18 \times 9.8 \times \sin 5-20=18 a$ $a=-0.2569 \ldots$ Newton's $2^{\text {nd }}$ Law down slope. Force in rod can be taken as tension or thrust. Taking it as tension T gives For D: $10 \times 9.8 \times \sin 5-15-T=10 a$ (For C: $8 \times 9.8 \times \sin 5-5+T=8 a$) $T=-3.888 \ldots=-3.89 \mathrm{~N}(3 \mathrm{s.f.})$ The force is a thrust	M1 A1 M1 F1 A1 A1	$F=m a$. Must have 20 N and $m=18$. Allow weight not resolved and use of mass. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$ and sign errors (including inconsistency between the 15 N and the 5 N). cao $F=m a$. Must consider the motion of either C or D and include: component of weight, resistance and T. No extra forces. Condone sign errors and $s \leftrightarrow c$. Do not condone inconsistent value of mass. FT only applies to a, and only if direction is consistent. ' $+T$ ' if T taken as a thrust ' $-T$ ' if T taken as a thrust If T taken as thrust, then $T=+3.89$. Dependent on T correct

or Newton's $2^{\text {nd }}$ Law down slope. Force in rod can be taken as tension or thrust. Taking it as tension T gives For C: $8 \times 9.8 \times \sin 5-5+T=8 a$ For D: $10 \times 9.8 \times \sin 5-15-T=10 a$ $a=-0.2569 \ldots T=-3.888 \ldots=-3.89 \mathrm{~N} \text { (3s.f.) }$ The force is a thrust	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { F1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$F=m a$. Must consider the motion of C and include: component of weight, resistance and T. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. $F=m a$. Must consider the motion of D and include: component of weight, resistance and T. No extra forces. Condone sign errors and $\mathrm{s} \leftrightarrow \mathrm{c}$. Do not condone inconsistent value of mass. Award for either the equation for C or the equation for D correct. ' $-T$ ' if T taken as a thrust ' $+T$ ' if T taken as a thrust First of a and T found is correct. If T taken as thrust, then $T=+3.89$. The second of a and T found is FT Dependent on T correct
then After 2 s: $v=3+2 \times a$ $v=2.4860303$.. so $2.49 \mathrm{~m} \mathrm{~s}^{-1}$ (3 s. f.)	M1 F1 9	Allow sign of a not followed. FT their value of a. Allow change to correct sign of a at this stage. FT from magnitude of their a but must be consistent with its direction.
	18	

3		mark	notes
(i)	Resolving $\begin{aligned} & \leftarrow 250 \sin 70=234.92 \ldots \text { so } 235 \mathrm{~N}(3 \text { s. f. }) \\ & \uparrow 250 \cos 70=85.5050 \ldots \text { so } 85.5 \mathrm{~N}(3 \text { s. f. }) \end{aligned}$	M1 A1 A1 3	Resolving in at least 1 of horiz or vert. Accept $\sin \leftrightarrow \cos$. No extra terms. Either both expressions correct (neglect direction) or one correct in correct direction cao Both evaluated and directions correct
(ii)	$250 \div 2=125 \mathrm{~N}$	B_{1}	Accep 125 g only if tension taken to be 250 g in (i)
		4	

4		mark	notes
(i)	Diagram for P or Q Other diagram	B1 B1 2	Must be properly labelled with arrows Must be properly labelled with arrows consistent with $1^{\text {st }}$ diagram Accept single diagram if clear.
(ii)	Let tension in rope be $T \mathrm{~N}$ and accn $\uparrow a \mathrm{~m} \mathrm{~s}^{-2}$ For box P: N2L \uparrow $1030-75 g-T=75 a$ For box Q: N2L \uparrow $T-25 g=25 a$	M1 A1 A1 3	N2L applied correctly to either part. Allow $F=m g a$ and sign errors. Do not condone missing or extra forces. Direction of a consistent with equation for P. [Condone taking + ve downwards in either equation. +ve direction must be consistent in both equations to receive both A1s]
(iii)	tension is 257.5 N	M1 A1 2	Solving for T their simultaneous equations with 2 variables. cao CWO
		7	

5		mark	notes
(i)	L i direction $\begin{aligned} & 150=250 a \\ & a=0.6 \text { so } 0.6 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & 2 \end{aligned}$	Use of N2L. Allow $F=m g a$. Accept no reference to direction
(ii)	$\begin{gathered} 0 \mathrm{~N} \\ -\mathbf{i} \text { direction } \end{gathered}$	B1 B1 2	Allow correct description or arrow [Accept '- 150 in idirection' for B1 B1]
(iii)	For force only in direction perp to \mathbf{i} $300 \sin 40=450 \sin \theta$ $\theta=25.37300 \ldots \text { so } 25.4^{\circ}(3 \mathrm{s.} \mathrm{f.})$ In i direction $300 \cos 40+150+450 \cos \theta$ 786.4017... so 786i N (3 s. f.)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & 6 \\ & \hline \end{aligned}$	Resolution of both terms attempted. Allow $\sin \leftrightarrow \cos$ if in both terms. Allow 250 or 250 g present. $300 \sin 40$ or $450 \sin \theta$ Accept \pm. Accept answer rounding to 25.5. Allow SC1 if seen in this part. Prope resolution attempted of 450 and 300. Allow $\sin \leftrightarrow \cos$ if in both terms Accept use of their θ or just θ. Either resolution correct. Accept their θ or just θ. Accept $\sin /$ cos consistent with use for cpt perpendicular to \mathbf{i}. Accept no reference to direction cao. Allow SC1 WW
(iv)	$\text { Using } s=u t+0.5 a t^{2}$ $1=0.5 a \times 2^{2}$ $a=0.5$ Using N2L in i direction $786.4017 \ldots-F=250 \times 0.5$ $661.4017 \ldots \text { so } 661 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 M1 A1 E1	Appropriate (sequence of) suvat [WW M0 A0] Use of $F=m a$ with their 786.4 and their a. No extra forces. Allow sign errors. All correct using their 786.4 and a Use of N2L clearly shown. (Accept 0.5 used WW)
(v)	Usi g N2L in idirection either $125-200=250 a_{1}$ or (starting again) $786.4017 \ldots-(200+661.4017 \ldots)=250 a_{1}$ so $a_{1}=-0.3$ Using $v^{2}=u^{2}+2 a_{1} \mathrm{~S}$ $\begin{aligned} & v^{2}=1.8^{2}+2 \times(-0.3) \times 1.65 \\ & v=1.5 \text { so } 1.5 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \\ & \text { F1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { F1 } \\ & \hline \text { A1 } \\ & \hline \hline \end{aligned}$	Use of $F=m a$ with their values. Allow 1 force missing FT only their 786... and their 661 Appropriate (sequence of) suvat with $u \neq 0$. Must be 'new' a obtained by using N2L. Only FT use of \pm their a_{1} cao
		20	
	CSAIIdVathsTutol.COIT		

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \& mark \& comment \& sub \\
\hline (i) \& Up the plane $T-4 g \sin 25=0$
$$
T=16.5666 \ldots \text { so } 16.6 \mathrm{~N}(3 \mathrm{s.} . \mathrm{f} .)
$$ \& M1

A1 \& | Resolving parallel to the plane. If any other direction used, all forces must be present. Accept $s \leftrightarrow c$. |
| :--- |
| Allow use of m. No extra forces. | \& \\

\hline (ii) \& Down the plane,

$$
(4+m) g \sin 25-50=0
$$

\[
m=8.0724 ··· so 8.07 (3 s. f.)

\] \& | M1 |
| :--- |
| A1 |
| A1 | \& No extra forces. Must attempt resolution in at least 1 term. Accept $\mathrm{s} \leftrightarrow \mathrm{c}$. Accept Mgsin25. Accept use of mass. Accept Mgsin25 \& 3 \\

\hline (iii) \& Diagram \& \& Any 3 of weight, friction normal reaction and P present \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& B1 \& \begin{tabular}{l}
in approx correct directions with arrows. \\
All forces present with suitable directions, labels and arrows. Accept \(W, m g, 4 g\) and 39.2 .
\end{tabular} \& 2 \\
\hline \& \begin{tabular}{l}
Resolving up the plane
\[
P \cos 15-20-4 g \sin 25=0
\]
\[
P=37.8565 \ldots . \text { so } 37.9 \mathrm{~N}(3 \mathrm{~s} .
\] \\
f.)
\end{tabular} \& M1

B1
B1

A1

A1 \& | Resolving parallel to the plane or All forces must be present. Accept $s \leftrightarrow c$. Allow use of m. At least one resolution attempted and accept wrong angles. Allow sign errors. |
| :--- |
| $P \cos 15$ term correct. Allow sign error. |
| Both resolutions correct. Weight used. Allow sign errors. FT use of P sin 15. All correct but FT use of $P \sin 15$. | \& 5 \\

\hline (v) \& Resolving perpendicular to the plane

$$
R+P \sin 15-4 g \cos 25=0
$$

$$
R=25.729 \ldots \text { so } 25.7 \mathrm{~N}
$$ \& M1

B1

F1

A1 \& | May use other directions. All forces present. No extras. |
| :--- |
| Allow $\mathrm{s} \leftrightarrow \mathrm{c}$. Weight not mass used. |
| Both resolutions attempted. Allow sign errors. |
| Both resolutions correct. Allow sign errors. Allow use of $P \cos 15$ if $P \sin 15$ used in (iv). All correct. Only FT their P and their use of $P \cos 15$. cao | \& \\

\hline \& \& 16 \& \& \\
\hline
\end{tabular}

